
 

  

 

 

 

Integration Development Group  
Product Adoption 

Third Party Provider Behaviors Guidelines 
 
      
 
 
 

 
 
 
 
 
 

 

 



 
 

  

 

 

 



 

Provider Behaviors Guidelines Report                               

      
1 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 
jXchange Header Behavior ........................................................................................................ 2 

Request Structure .......................................................................................................... 2 
Institution Routing Identification Behavior ....................................................................... 3 

Backwards Compatibility ............................................................................................................ 3 
EA Architectural Guidelines ..................................................................... 4 

Error/Fault Behaviors ................................................................................................................. 5 
Structure ......................................................................................................................... 5 
Error Categories ............................................................................................................. 5 
Behaviors ....................................................................................................................... 6 

Enumerated Elements ................................................................................................................ 6 
Closed Enumerated Elements ........................................................................................ 6 
Open Enumerated Elements .......................................................................................... 7 

Concurrency Models .................................................................................................................. 8 
Concurrency EA Guidelines ............................................................................................ 9 

Addition Service Guidelines ......................................................................................................11 
Modification Service Guidelines ................................................................................................12 
Inquiry Service Guidelines ........................................................................................................13 
Search Service Guidelines ........................................................................................................14 

Search Record Request / Response Behavior ...............................................................18 
Wildcard Search ............................................................................................................18 

Misc Information ........................................................................................................................20 
Authentication User Credentials ....................................................................................20 
Custom Elements ..........................................................................................................20 
Documented Choice Statements ...................................................................................21 
Forced Elements ...........................................................................................................23 
JHANull Attribute ...........................................................................................................24 
MemoPostInc ................................................................................................................25 
MaskVal Attribute ..........................................................................................................25 
Rstr Behavior .................................................................................................................25 
X_Filter Behavior ...........................................................................................................26 

 
 
 
 
 



 

Provider Behaviors Guidelines Report                               

      
2 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

jXchange Header Behavior 
 Tracking Utilization 

 Lives in Request and Response Message 

 Specific Behavior 

Request Structure 
 

XSD Element Path Required/Opt
ional/Conditi
onal 

Comment 

jXchangeHdr.JXVer O jXchange will return the current version deployed 
regardless of the value in the request header 

jXchangeHdr.AuditUserId R This is the User Id which the consumer would like 
written to the audit as performing the requested 
service.  It will vary but could be down to the user 
id.  It will not be used to authenticate however, 
just audit. 

jXchangeHdr.AuditWsId R This is the Workstation Id which the consumer 
would like written to the audit as performing the 
requested service 

jXchangeHdr.ConsumerName O The name of the consumer that is consuming the 
service 

jXchangeHdr.ConsumerProd O The name of the product which is consuming the 
service (Business Product Name) 

jXchangeHdr.jXLogTrackingId O jXchange could create Id when not submitted by 
Consumer 

jXchangeHdr.InstRtId C The identification of the entity of submitted 
message.  A financial institution will utilize the 
routing transit or ABA nine (9) digit number 
assigned to financial institutions for the purpose 
of routing as assigned by the American Bankers 
Association.  Any leading zeros must be provided 
for a complete routing and transit number.  A 
non-financial institution entity will use a mutually 
agreed upon identification that must contain at 
least one non-integer character.  When a record 
is directed to a specific Financial Institution 
within a holding company, the institution routing 
identification is specific Financial Institution 
routing identification and not the holding 
company identification 

jXchangeHdr.InstEnv O An identification provided by the consumer that 
defines the environment in which the institution 
is operating.  Production (PROD) is the default 
value 



 

Provider Behaviors Guidelines Report                               

      
3 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

jXchangeHdr.BusCorrelId O The correlation identification as related to 
business functions and activities 

jXchangeHdr.WorkFlowCorelId O The correlation identification as related to 
workflow functions and activities 

jXchangeHdr.ValidConsmName O The consumer name that can be validated by 
Enterprise goverance. 
The consumer product name that can be 
validated by Enterprise goverance. 
 
Behavior: The combination of the valid consumer 
name and valid 
consumer product would provide the type of 
device being used by the 
consumer based on settings for the 
transformation layer. 

jXchangeHdr.ValidConsmProd O The consumer product name that can be 
validated by Enterprise goverance. 

 
Responses should echo back the information provided in the jXchange Header with the 
Consumer request. 
 

Institution Routing Identification Behavior 
 The Service Provider will need to map to the submitted Institution Routing number 

<InstRtId> element if their application maintains a different institution identifier 

 The Institution Routing Number <InstRtId> can be the nine (9) digit assigned by the 

American Bankers Association (ABA). 

o All leading zeros must be included to be a complete routing and transit number 

 The absence of the Institution Environment <InstEnv> element will equate to “PROD” = 

Production Environment. 

o It will be the responsibility of the sender to send the appropriate data to identify 

the environment if necessary 

 

Backwards Compatibility 
Backward compatibility is a relationship between two components, rather than being an attribute of just 
one of them. More generally, a new component is said to be backward compatible if it provides all of 
the functionality of the old component.   Backward compatibility is the special case of compatibility in 
which the new component has a direct historical ancestral relationship with the old component. 
jXchange maintains Backwards Compatibility with the user of Version Tags 
 
The notion of compatibility applies to messages. In the case of a message a new version of that 
message ("v2") is said to be backward compatible with the old version of the message ("v1") 
when it can both send and receive messages that work with v1. Everything that v1 could do 
must also be possible with v2, that can be read by v1 (which is something that v1 could do.) 
 



 

Provider Behaviors Guidelines Report                               

      
4 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

XSD iteration versions are interim releases of an XML schema that contain only the changes 
that are backwards compatible the existing version of this schema.  Changes that can be 
incorporated in a iterated version: 
 

 Backward Changes 

o Adding new optional elements or optional attributes 

o Changing attributes cardinality from mandatory to optional 

o Adding a term to an enumerated list 

 

 Non-Backward Changes 

o Changing an attribute cardinality from optional to mandatory 

o Adding a mandatory element 

o Changing an attribute or element tag name 

 

EA Architectural Guidelines 
 
The Enterprise Architect XSD contracts incorporate version tags within an object.  The version 

tags represent an iteration growth of the object but will be backwards compatible.  The version 

tag is embedded in an optional sequence.  This allows the iteration to be optional based on the 

optional sequence but the version tag is required which conveys to the service provider that the 

consumer understands the preceding objects after the version tag.  This structure intuitively 

allows the consumer to ignore the additional objects without breaking any existing application 

processes.  

The concept of backwards compatibility extends beyond the structural design of XSD contracts 

to include the business services (programs) that support the XSD contracts.  All service 

providers should adhere to maintaining backwards compatibility so not to disturb consumers’ 

applications.  Changes that are not backwards compatible: 

 Creating errors due to Service Provider’s data base field to element size differentials 

o Service Providers should truncate and return a warning to consumer 

 Creating hard errors for previously successful message requests 

o Service Providers should establish a tenet that allows the business service to get 

around the error situation; 

o Regulatory changes could be an exception to this rule 

 Changing an Error Code <ErrCode> from one value to another for an existing error or 

fault 

 Removing a business service so the message can no longer be supported 

o Service Providers should adhere to the established deprecation policy 

 Removing support of a previously support closed enumerated value 

o Service Providers should establish a tenet that allows the canonical value to be 

translated to acceptable value 

 

 



 

Provider Behaviors Guidelines Report                               

      
5 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

XSD Contract Iteration Example 

 

Error/Fault Behaviors 
JXchange, error handling has been designed into the messaging structure and involves 
notification through use of codes, categories and descriptions, as well as options for error 
overrides for non-fatal errors. 

Structure 
 ErrCode – Error Code (Required) 

 ErrCat – Error Category (Required) 

 ErrDesc – Error Description (Required) 

 ErrElement – Error Element (Optional) 

 ErrElementVal – Error Element Value (Optional) 

 ErrLoc – Error Location (Optional) 

Error Categories 
 Warning – Successful transmission of requested response transmission, but information 

must be returned to the consumer describing under what conditions the successful 

response was able to be created 

 Error – Failure condition that cannot be overridden and must be corrected before 

processing can be completed 

 Fault – Failure condition that can be overridden 

 Override – Specific kind of warning notifying the customer that the fault has been 

overridden 

 



 

Provider Behaviors Guidelines Report                               

      
6 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

Behaviors 
 Override Behavior 

o When a consumer wishes to override a fault then he must send the unique error 

code in the element Error Override Information array in the operation request and 

the service provider will understand that they should ignore the list of codes 

given. 

o If the <ErrOvrRd> element contains a maximum number of nines (9999999 value 

for a seven digit integer), the Service Provider is notified that all faults should be 

overridden, if possible 

 

 Parallel vs. Serial Error Message Handling 

o Serial – a Service Provider will issue an error response message when it has 

discovered the first error in a request. 

o Parallel – The Service Provider can continue to process a request message after 

detecting a fault capable of being overridden in an attempt to identify all possible 

errors before returning an error message to the Consumer 

o Parallel Error Message Handling is the most efficient method and is suggested 

as the preferred error handling system for Service Providers. 

Enumerated Elements 
These are elements that have a pre-defined set of data values.  The XSD contracts define enumerated 
elements by data type Closed Enumerated or Open Enumerated.  The EAG defined types adopt the 
string primitive data type. 

Closed Enumerated Elements 

These are elements that have a pre-defined set of data values.  The XSD contracts define 
enumerated elements by data type Closed Enumerated or Open Enumerated.  The EAG 
defined types adopt the string primitive data type.  

 The Closed Enumerated values are defined in the XSD contract in the form of annotations.  
The fixed values are the only data set that a consumer of these elements needs to understand.  
A Service Provider may return a fault when a value is delivered in a message that a Service 
Provider does not understand.  However; an XML document with values not defined in the 
contract will pass schema validation.  This behavior allows for closed enumerated values to be 
forward compatible whereas the Consumer and the Service Provider understand a value but the 
XSD contract annotated values have not been updated. 

The closed enumerated values are a much more effective means from the perspective of a SOA 
guideline as it reduces any ambiguity behavior of an element.  The Closed enumeration values 
can be used by the jXchange Framework in determining how to invoke an operation.  Some of 
the behaviors that goes along with this are; (1) if the element is not sent or sent empty, and it is 
required, a fault error will be returned; (2) if the element is not sent or sent empty, and it is 
optional, a default will be used and;  (3) if the element is sent with an incorrect value, a fault 



 

Provider Behaviors Guidelines Report                               

      
7 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

error could be returned.  Generally, a name closed enumerated element will be suffixed with 
~Type~ or ~Stat~.  

A service provider could transform the XSD contract defined values to values that are 
understood by their application.  For example, a service provider might accept the closed 
enumerated value of ~Months~ but could store that value in their application as ~M~.   

 
Closed Enumerated Element Example 

<xsd:complexType name="TermUnits_Type"> 

  <xsd:annotation> 

   <xsd:documentation> 

    <Jx> 

     <ElemDesc>term units Years,Months, Days,Indefinite 

</ElemDesc> 

    

 <CanonicalVal>Days,Months,Years,SemiMonthly,Indefinite,NA</CanonicalVal> 

    </Jx> 

   </xsd:documentation> 

  </xsd:annotation> 

  <xsd:simpleContent> 

   <xsd:extension base="ClosedEnum_Type"> 

    <xsd:attribute name="JHANull" type="JHANull_Type" 

use="optional"/> 

    <xsd:attribute name="Rstr" type="Rstr_Type" use="optional"/> 

   </xsd:extension> 

  </xsd:simpleContent> 

 </xsd:complexType> 

 

Open Enumerated Elements 
The Open Enumerated values are a definite set of values but those values are not represented 

in the contract.   These enumerated values often differ from Service Provider to Service 

Provider as well as service provider installations sites to service provider installations sites.  

 Open enumeration elements are generally suffixed with Code.  The element that is suffixed with 

Code has a mate element that is suffixed with Desc.  This is because often a service provider 

field is represented as a code that does not convey its representation thereby the service 

provider returns the description of the code that is a literal value that can be understood by the 

consumer.   Generally, an element suffixed with ~Code~ could be found in Addition and 

Modification business operations whereas an element suffixed with ~Desc~ would be found in 

Inquiry, Multi-Inquiry, and Search business operations.  An example might be <IntCalcCode> 

would have a mate called <IntCalcDesc>. 

o Service Provider conveys these canonical values by means of web service call – 

Service Dictionary Search (SvcDictSrch) 

 



 

Provider Behaviors Guidelines Report                               

      
8 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

Open Enumerated Element Example 

<xsd:complexType name="IntCalcCode_Type"> 

  <xsd:annotation> 

   <xsd:documentation> 

    <Jx> 

     <ElemDesc>Interest calculation method </ElemDesc> 

    </Jx> 

   </xsd:documentation> 

  </xsd:annotation> 

  <xsd:simpleContent> 

   <xsd:extension base="OpenEnum_Type"> 

    <xsd:attribute name="JHANull" type="JHANull_Type" 

use="optional"/> 

    <xsd:attribute name="Rstr" type="Rstr_Type" use="optional"/> 

   </xsd:extension> 

  </xsd:simpleContent> 

 </xsd:complexType> 

 

 

 

Concurrency Models 
 The application and database must work in concert to provide the appropriate level of 

data integrity and performance while minimizing user rework to address conflicts and 

deadlocks. 

 Optimistic, Pessimistic and Chaos refer to three different types of concurrency concepts 

and the safeguards an application will take based on the likelihood of concurrent 

updates and how much rework is acceptable 

o Optimistic concurrency control is used when it is unlikely that different users will 

update the same data 

o Pessimistic concurrency control is used when it is likely that the same data will 

be updated by different users 

o Chaos concurrency control is used in situations when concurrent updates are not 

possible or “last in wins” is acceptable. 

 

 

 

  



 

Provider Behaviors Guidelines Report                               

      
9 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

Concurrency EA Guidelines 
In database systems, a consistent transaction is one that does not violate any integrity 
constraints during its execution and ensures that correct results for concurrent operations are 
generated, while getting those results as quickly as possible.   
  
The application and database must work in concert to provide the appropriate level of data 
integrity and performance while minimizing user rework to address conflicts and deadlocks. 
  
Optimistic, Pessimistic and Chaos refer to three different types of concurrency concepts and the 
safeguards an application will take based on the likelihood of concurrent updates and how much 
rework is acceptable. 
 
Optimistic concurrency control is used when it is unlikely that different users will update the 
same data.  In the unlikely event that the same data is updated by different users, the conflict is 
detected when data are saved and the second user must redo/merge changes in order to 
prevent overwriting the changes made by the first user.  Users of a well designed optimistic 
concurrency application experience fast response time and are inconvenienced only in the rare 
case of an update conflict.  
 
Pessimistic concurrency control is used when it is likely that the same data will be updated by 
different users.  To prevent the need to redo or merge changes, an application serializes data 
access so that only one user can edit data at a time.  The obvious downside is that subsequent 
users must wait until preceding user(s) has completed their changes and this can increase 
response time or data unavailability. However, overall user productivity can be better than 
optimistic currency control because rework is avoided.  
 
Chaos concurrency control (also known as Anarchy) is used in situations when concurrent 
updates are not possible or “last in wins” is acceptable.  No safeguards need to be taken with 
chaos concurrency because there is either no chance of conflicts or overwrites are ok.  Chaos 
concurrency is typically used in single-user applications or in multi-user applications where data 
are segregated in such a way that concurrent updates are either not possible (e.g. unique web 
session key) or so unlikely (e.g. CustomerID key) that the risk of lower concurrency level isn’t 
warranted 
 

 Adoption of the Optimistic Concurrency model for modification services 

o The activity intention element will exist on all inquiry operations that support a 

modification mate 

 The Activity Intention element allows the consumer to convey to the service provider 

their intention for the data returned in the response. 

o The Activity Intention element <ActIntent> supports three canonical values: 

 Read Only (ReadOnly) – this is the default 

 Update (Upd) 

 Delete (Dlt) 

 The service provider will echo back the Activity Intention element in the response. 

o The service provider will return an Activity Intention Key when the consumer 

submits the Activity Intention element canonical values of Update or Delete. 

o The service provider must return a unique Activity Intention Key <ActIntentKey> 

for each item that is returned when the response includes an array of elements. 



 

Provider Behaviors Guidelines Report                               

      
10 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

o The consumer should cache the Activity Intention Key so it can be submitted in a 

subsequent modification request. 

 The Service provider will return a fault when the provider’s saved data does not match 

the intended updated data when the consumer’s modification request with Activity 

Intention Key <ActIntentKey> is submitted on the modification request. 

Concurrency Model Diagrams

 



 

Provider Behaviors Guidelines Report                               

      
11 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 

Addition Service Guidelines 
 

 The named EA XSD contract will be suffixed with ~Add~ 

 The business function will convey to the service provider to create an entry/record in the 

service provider’s data base for the supported business service 

 The service provider would return the added entry/records keys in the response if 

applicable 

 The majority of the child node elements will be decorated with the JHANull attribute 

 Generally, the request message will have a complex object that is required but all the 

elements inside the complex object are optional.  This should convey that at least one of 

the elements inside the object is required 

 A consumer may send a Service Dictionary Search (SvcDictSrch) message for all 

addition services to obtain the service provider’s element default values.  This will assist 

the consumer in their validation process for elements without having to deliver the XML 

payload and receiving an error that an element is required by the service provider even 

though the XSD contract references the element as optional 



 

Provider Behaviors Guidelines Report                               

      
12 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 The EA XSD addition contracts make use of re-used complex objects.  Thereby, often 

many of the child nodes (elements) encapsulated by a parent node (complex) are 

optional from an XSD contract perspective.  However; service providers will have 

minimum requirements as to the required elements which will be conveyed to the 

consumer by means of message fault(s). 

Addition Service XSD Contract Example 

 

Modification Service Guidelines 
The EA XSD contracts that qualify as a modification service, also, serve as a delete service.  
There is not, generally, an EA XSD contract service specific to a delete business requirement.  
The method of deletion is discussed below.  The EA XSD contracts that qualify as a 
modification service will generally meet the following requirements: 
 

 The named EA XSD contract will be suffixed with ~Mod~; 

 The business function will convey to the service provider to update an entry/record in the 

service provider’s data base for the supported business service; 

 The service provider would return the RsStat element as success in the response if the 

operations request was successful otherwise, a fault is returned; 



 

Provider Behaviors Guidelines Report                               

      
13 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 The service provider should return a fault when any of the modified elements are invalid on the 

request and will never return a partial success response; 

 The child node elements will be decorated with the JHANull attribute.  The behavioral aspect of 

the attribute is addressed elsewhere in this document; 

 The request message will have required element(s) representative of the keys as related to the 

specific business service; 

 The request message will contain a delete element <Dlt> that permits a consumer to submit the 

key(s) with a Delete=true without a complex object to convey a delete request to the Service 

Provider.  However; the service provider reserves the right to either mark the record for 

deletion or perform a data base delete request. 

 

Inquiry Service Guidelines 
 

 The named EA XSD contract will be suffixed with ~Inq~ 

 The request message will have required key(s) however; the key(s) may be presented in 

the request as a documented choice statement 

 The service provider will return a fault when an invalid key(s) is submitted on the request 



 

Provider Behaviors Guidelines Report                               

      
14 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 The service provider would return the elements as related to the requested key in the 

response 

 Some of the child or parent node elements could be decorated with the Restriction 

~Rstr~ attribute 

 The response message may be a multi-occurrence object depending upon the business 

activity of the inquiry message 

 The request message may contain the Include Extended Element array that may require 

the consumer to submit a list of “x_” named objects to be returned in the response 

o A request made with a valid key but does not include any of the “x_” named 

objects could be returned a response with no complex objects. 

 The RsStat element is NOT included in the response because successful response 

package is an implied <RsStat>Success</RsStat> element value 

 
 
 
 

Search Service Guidelines 
 

 The names EA XSD contract will be suffixed with ~Srch~ 

 The request message may have required key(s) however; the key(s) may be presented 

in the request as a documented choice statement 

 The request message could have a number of elements that can serve as filters that 

allows a consumer to reduce the response set being returned 

 The request filters will be echoed back at the root response message 

 Some of the child or parent node elements could be decorated with the Restriction 

~Rstr~ attribute.  The behavioral aspect of the attribute is addressed elsewhere in this 

document. 

 The response message will always be a multi-occurrence object 

 The request message may contain the Include Extended Element array that allows a 

consumer to include a list of “x_” named objects to be included with the default response 

set. 

 The search message has a specific message header that differs from other message 

headers to allow the service providers to provide a pseudo state in a stateless message 

environment.   

o The Search Message headers differ from other message headers so that a 

Service Provider can convey a data set state within a message paradigm that 

maintains a stateless environment.  The elements encapsulated in the Search 

Message Header are used to control the records and the number of those 

records that returned to the consumer.  A Service Provider establishes the 

number of maximum records that is returned to a consumer.  A Service Provider 

will default a value for the maximum records when the consumer’s maximum 

records values in the operation request exceeds the Service Provider’s 

established thresholds for an operation.  

 



 

Provider Behaviors Guidelines Report                               

      
15 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 

 

 

  



 

Provider Behaviors Guidelines Report                               

      
16 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 

Search Message Header Behavior Example 

 
 The following are those elements and their respective role in the search message 

header;The RsStat element is NOT included int the response because successful 

response package is an implied element value 

 A request made with a valid key, if applicable, but due to filters submitted in the request 

returned a zero set of response does not constitute a fault.  The service provider will 

provide a warning to convey that no records matched the consumer’s search criteria 

 The response set is typically a limited element response set but could return some 

key(s) that allows a consumer to capture to make an inquiry message service call if 

applicable for the search business activity 



 

Provider Behaviors Guidelines Report                               

      
17 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 

 

 

 

 

 

 

  



 

Provider Behaviors Guidelines Report                               

      
18 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

Search Record Request / Response Behavior 
 
There are elements that pertain strictly to search operations that are used to control the records 
and the number of those records that are returned to the user. 

 Cursor (Request) – Tells the provider at which record to begin returning the results 

 MaxRec (Request) – Tells the provider the maximum number of records to return in the 

response 

 SentRec (Response) – Tells the consumer how many records were returned; may or 

may not be equal to the maximum number requested 

 MoreRec(Response) – Tells the user if there are more records available than what was 

returned 

 Cursor (Response) – Tells the user which record (as a number) would be next to be 

returned 

 TotRec(Response) – Tells the user the total number of records that exist in the file that 

meet the criteria of the request; is not returned if Cursor was included with the request 

 An example can be found at the above EA link. 

 

Wildcard Search 
A wildcard search allows a consumer to get a response set that is dynamic based on a 
message request elements.  Many elements, conveyed clearly by their name, convey to a 
consumer a key that then conveys to the service provider that the consumer is interested in the 
data that matches that key.  However; many search filter elements need to provide a consumer 
a means to search for the matches.  This can be referred to as a wildcard search because the 
consumer does not have enough information to do an exact match search.  These types of 
searches can be based on partial data value.  The consumer needs to convey to the service 
provider as to the type of partial search such as but not limited to Exact Match, Contains within, 
Starts With, and Ends With. 
 

 A wildcard search allows a consumer to get a response set that is dynamic based on a 

message request elements 

 Many search filter elements need to provide a consumer a means to search for the 

matches 

 This can be referred to as a wildcard search because the consumer does not have 

enough information to do an exact match search 

 These types of searches can be based on partial data value 

 The consumer needs to convey to the service provider as to the type of partial search 

such as but not limited to: 

o Exact Match 

o Contains within 

o Starts With 

o Ends With 

 A service provider cannot require exact case matches 

o For example, if a consumer submits a last name data value of ~mcgrath~ then 

the service provider should respond back with any data values that match 



 

Provider Behaviors Guidelines Report                               

      
19 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

regardless of case which could include but not limited to ~McGrath~, ~Mcgrath~, 

~mcgrath~, ~MCGRATH~ or any combination of case difference thereafter 

 

Exact Match Search Response Example 

  

Request:  <LastName SrchType="Exact">Smi</LastName> 
                
Response: <LastName>Smi</LastName> 

    <FirstName>John</FirstName> 
                  <LastName>Smi</LastName> 
                  <FirstName>Joe</FirstName> 

  
  Contains Match Search Response Example 

                
  Request:  <LastName SrchType="Contains">Smi</LastName> 
                
  Response: <LastName>Smi</LastName> 

      <FirstName>John</FirstName> 
                    <LastName>Smi</LastName> 
                    <FirstName>Joe</FirstName> 
                    <LastName>Gunsmith</LastName> 

                    <FirstName>Jane</FirstName>  

  
Ends With Match Search Response Example              
 
Request:  <LastName SrchType="EndsWith">Smi</LastName> 
                
Response: <LastName>Dritiesmi</LastName> 

                   <FirstName>Lucas</FirstName>  

  

Starts With Match Search Response Example 

Request:   
<LastName SrchType="StartsWith">Smi</LastName> 
  
 Response:  
<LastName>Smith</LastName> 
<FirstName>Mike</FirstName> 
<LastName>Smitherrens</LastName> 
<FirstName>Jason</FirstName> 
<LastName>Smitty</LastName> 
<FirstName>James</FirstName> 
 

 
 
 



 

Provider Behaviors Guidelines Report                               

      
20 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

Misc Information 
 

Authentication User Credentials 
 Authentication of end user credentials in the form of a WS Security Element that 

contains a single SAML V2.0 assertion 

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf 
 

Custom Elements 
The EA XSD contracts wildcard schema is provided by means of a custom complex.  The custom 
complex (Custom_CType) provides a mean for institution specific data as an extension point for 
custom variations of the XSD common dictionary.  The ##other namespace property is leveraged as 
this allows all elements which are from namespace other than targetNamespace.  
 
The provision for a consumer (message sender) to deliver custom elements to a service provider 
(message recipient) that is not part of the XSD contract.  The W3C defines this component as 
Wildcard Schema.  
  
Wildcard is the XML-Schema insider's term for an "xs:any" or an "xs:anyAttribute" declaration inside 
a schema. The idea is, wherever a wildcard appears in an XML Schema content model, "any" 
element or "any" attribute can be allowed to appear in an actual XML instance.  This declaration 
permits zero or more elements with "any" name inside the "targetNamespace" to appear at the end 
of the content model. 
 
This approach does come with some problems even though it provides an excellent extensibility 
mechanism for cooperating with stakeholders between future and past versions of the same 
schema. There are several reasons wildcards are not a good way to achieve compatibility between 
versions. 
 
1.       A targetNamespace wildcard permits too much freedom for current-version message 
producers to insert garbage that will be incompatible with future-version message consumers; 
 
2.       A wildcard in a specific place does not provide enough flexibility for natural data model 
evolution in the second version of the schema; 
 
3.       Technical limitations of wildcards - the element declarations consistent and unique particle 
attribution rules - prevent their use in "natural" ways and require awkward "wrapping" techniques; 
 
4.       And most seriously, wildcards put the onus on the designer of the original version of a schema 
to anticipate where and how evolution of the schema will occur. Experience shows that few people 
understand the future well enough to actually anticipate it. 
 

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf


 

Provider Behaviors Guidelines Report                               

      
21 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 
EA Architectural Guidelines 

 
The EA XSD contracts wildcard schema is provided by means of a custom complex.  The custom 
complex (Custom_CType) provides a mean for institution specific data as an extension point for 
custom variations of the XSD common dictionary.  The ##other namespace property is leveraged as 
this allows all elements which are from namespace other than targetNamespace.  
 
 XML Custom Example 

 
 

Documented Choice Statements 
 

 EA does not make usage of xsd:choice statements because: 

o Some programming languages do not provide an explicit mapping from 

xsd:choice whenever a code generator encounters xsd:choice in a type 

definition, it could map that type to a less than friendly API 

o XSD does not permit versioning within the choice statement which creates a 

challenge to maintain forward compatibility. 

 

 

 

 

 



 

Provider Behaviors Guidelines Report                               

      
22 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

Choice Statement Example 

 

 EA makes use of documented choice statements. 

o The XSD syntax in itself does not convey a specific behavior but the comments 

provided via either XML comments or annotations does convey this behavior 

o The disadvantage to this method is that it requires a developer to read the XSD 

in order to understand behavior rather than allowing a code generator toolkit to 

understand based on XSD syntax 

EA Document Choice Statement Example 

 

 

 

 

  



 

Provider Behaviors Guidelines Report                               

      
23 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

Forced Elements 
The vast majority of EA XSD message elements are optional because messages often are supported by 
multiple service providers.  This can be the cause of some ambiguity on the part of the message receiver 
(consumer) when an element, understood by the service provider, but not returned in the message 
because the element is optional.  The guidance for forced elements is as follows; 
  

 “When a data value is zero a service provider’s response will return the element whose primitive 
type is decimal as a value of “0”.  

o For example, the element for current balance could appear as <CurBal>0</CurBal>.  
o This would explicitly convey to the consumer that the numeric element has an actual 

value rather than implicitly due to the element missing in the response.  

 The following exceptions exist for this guidance: 
o The service provider has no knowledge of the element 
o The service provider is returning the element as part of an echo-back element from the 

request 
o The service provider value is known but undefined (Null) 

  
The proceeding table provides guidance for all element types. 
 

Reference Type Empty Missing Null 

Int Zero Zero Null 

Long Zero Zero Null 

String Null Null Null 

Date Null Null Null 

Time Null Null Null 

Base64Binary Null Null Null 

anyURI Null Null Null 

ID Null Null Null 

Decimal Null Null Null 

 
This table summaries that 
 
(1) if a service provider has a decimal element it will be delivered; 
(2) element integers (int & long) will only be used as numbers and are therefore safe to 
be assumed as zero when missing or empty; and 
(3)  all other element types have no special behavior. 



 

Provider Behaviors Guidelines Report                               

      
24 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

A service provider might return a zero when the contract defines an element as a :string 
but the service providers data store reference field is stored as an integer.  In this case, 
the zero might need to be conveyed to the consumer due to the some expected 
behavior. 

 

JHANull Attribute 
The mechanism “xsi:nil= true” was added to the WC3 XML Schema standard to explicitly assign 
a value to null to an element rather than using an empty element to implicitly assign a value to 
null. Because the  behavior in the jXchange framework treats all messages as literal XML and 
passes that  XML on to the provider it allows the provider  to distinguish the difference between 
a missing element and one that is there but has “xsi:nil = true” .  
  
The provider is using the explicit declaration to define a behavior where the element needs to be 
modified to a null value and when the element is missing to mean do not modify the existing 
element. This behavior is legitimate and uses the capability of the XML Schema specifications. 
The problem with this becomes apparent when a service is implemented and the message is 
de-serialized into objects under the covers. All the elements that are defined by the proxy or 
service for messages are created as objects and null or its actual value is assigned to them. 
There is not a way to represent that an element is not included in the XML but the value is not 
null in the object world using the present parsers 
 

 An object is null whether it doesn’t exist or the element is assigned to “xsi:nil=true” 

o This becomes a problem because most implementation of web services are 

deserialized on input and serialized on output 

o Any other approach is discouraged as the complexity of implementation becomes 

more difficult 

 Clients that are using .Net or probably any tool kit will not be able to take advantage of 

this implementation in the jXchange framework 

o They will not have control over an element creation during serialization using the 

existing tools. 

 
 
EA Architectural Guidelines 

The behavior expectation for XML elements in a modification service for (1) absence element, 
(2) empty element, or (3) xsi:nil=true are the same.  This should convey to the service provider 
to do nothing.  However; jhanull=true will convey to the service provider to set the element to a 
null value.  The jhanull=true could require different implementation per platform.  It could mean 
null for one platform whereas another it might convey *zeros or blanks. 
  
The behavior expectation for XML elements in an addition service for (1) absence element, (2) 
empty element, or (3) xsi:nil=true are the same.  This should convey to the service provider to 
set defaults.  However; jhanull=true will convey to the service provider to set the element to a 
null value.  The jhanull=true could require different implementation per platform.  It could mean 
null for one platform whereas another it might convey *zeros or blanks. 
  
  
 



 

Provider Behaviors Guidelines Report                               

      
25 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

XML JHANull Snippet Example 

The Beneficiary distribution code is being conveyed to the service provider to set the stored 
element value 
as  null. 
 

 

MemoPostInc 
 Element included in an AcctHistSrch message that determines the behavior searching 

history search for memo posted items.  The default value will be Excl (Exclude).  

Canonical Values are: 

o Excl 

o Only 

 If the MemoPostInc element has the value of “Only”, XSLT is used to transform the 

AcctHistSrch request to a MemoPostSrch request and then is sent to the provider. XSLT 

is used to transform the provider’s MemoPostSrchResponse to an 

AcctHistSrchResponse. 

 If the MemoPostInc element has the value of “Excl”, it is just passed through. 

 

MaskVal Attribute 
The service provider will always include the clear text of the element value however; may 
optionally include the service provider’s masked value of the clear text. This will allow the 
consumer to switch from a masked value to a clear text value with requiring an additional 
service call. 
Example: <TaxId MaskVal="882-89-7818">882897818</TaxId> 

 

Rstr Behavior 
The attribute Restrictions <Rstr> references the element of the same name and is a closed 
enumerator with the following canonical values:  

 NoAccess = Access is denied. This attribute value may exist at the parent node as well 

as the element node.  

 NoAccessPart = Access is denied as a default for all of the nodes related to the parent 

node and any of the related nodes could override the accessibility setting at the parent 

node. This attribute value can only exist at a parent node.  



 

Provider Behaviors Guidelines Report                               

      
26 © 1999-2015 Jack Henry & Associates, Inc. 

Product Adoption  

Release 2014 

 ReadWrite = Full read and write access to any of the nodes. This is the default value.  

 ReadWritePart = Full read and write access for all the nodes related to the parent node 

and any of the related nodes could override the accessibility setting at the parent node. 

This attribute value can only exist at a parent node.  

 ReadOnly = Read only to any of the nodes.  

 ReadOnlyPart = Read only as a default for all of the nodes related to the parent node 

and any of the related nodes could override the accessibility setting at the parent node. 

This attribute value can only exist at a parent node.  

 Hid = Hide all of the nodes.  

The canonical values that are prefixed with Part (Partial) will convey to the consumer that 
overrides can exist for any of the proceeding nodes. Therefore, these canonical values can 
never exist at an element node.  
The elements in the XML body are decorated with an attribute that conveys restrictions for an 
element. However, the data pertaining to the element is delivered when the service provider 
needs to convey to the consumer that the data element should be masked. For example, the 
current balance with restrictions could appear as <CurBal Rstr = 
“NoAccess”>1000.00</Curbal>. 
 
 

X_Filter Behavior 
To limit the size of responses containing automatically generated response elements, jXchange 
is designed to automatically return priority preferred elements from any given message pair and 
retain the non-preferred and less used premium complex elements until they have been 
specifically requested 
 

 Operations containing the premium x_prefix complexes in the response elements, 

request elements (IncXtendElemArray and XtendElem) are included in the Request 

message structure to call for any or all premium complexes.  The request elements, if 

needed, must contain the name of one or more premium complexes 

 

 A Service Provider may adopt the option to return all object and allow the Service 

Gateway to filter out the complexes not requested. 

 
 


