Integration Development Group
Product Adoption

Third Party Provider Behaviors Guidelines

Jjack henry Banking’

A DIVISION OF JACK HENRY & ASSOCIATES INC®

© Copyright 1999-2014 Jack Henry & Associates, Inc.
Al rights reserved. Information in this document is subject to change without notice.

Printed in the United States of America.

No part of this document may be copied, reproduced, stored in a retrieval system, displayed, distributed or transmitted in any form or any means whatsoever
(electronic, mechanical or otherwise), including by photocopying or recording for any purpose, without the prior written permission of Jack Henry & Associates,
Inc. Making unauthorized copies of this document for any purpose other than your own personal use is a violation of United States copyright laws.

Any unauthorized use of Jack Henry & Associates, Inc.’s trademarks and service marks is strictly prohibited. The following marks are registered and
unregistered trademarks and service marks of Jack Henry & Associates, Inc.:

3rd Party Sweep™; 4|sight™; Account Analysis™; Account Cross Sell™; Account Cross Sell Jumpstart™; Account Number Change™; ACH/Check Conversion
Services™; ACH Client™; ACH Manager™; ACH Origination/Processing™; Advanced Reporting for Credit Unions™; AlertCenter™; AlertManager™;
AllAccess™; Alogent®; Alogent® Back Counter™; Alogent® Commercial Remote Deposit™; Alogent® Enterprise Duplicate Detection™; Alogent® Front Counter™;
Alogent® Image ATM™; Alogent® Mobile Remote Deposit™; Alogent® Payment Web Services™; Alogent® Payments Gateway™; Alogent® Retail Remote
Deposit™; Andiamo™; Annual Disclosure Statement Online™; ArgoKeys®; ArgoKeys® Branch Sales Automation™; ArgoKeys® DepositKeys™: ArgoKeys®
LendingKeys™; ArgoKeys® RelationshipKeys™; ATM Manager Pro®; ATM Manager Pro® — Asset & Site Management™; ATM Manager Pro® — Cash
Management™; ATM Manager Pro® — Event Management™; ATM Manager Pro® — Financial Management™; AudioTel™; Basel [l Pro™; Biodentify™;
BladeCenter™; BondMaster™:; Branch Deposit Reporting Pro™; Brand Management Services™; BusinessManager®; Call Report Pro™; Cash Automation™;
Cash Dispenser™; Cash Recycler™; Centurion Business Continuity Planning™; Centurion Business Recovery Consulting Group™; Centurion Co-Location™;
Centurion Disaster Recovery®; Centurion Emergency Notification™; Centurion Enterprise-Level Recovery™; Centurion Episys Hosted Failover™; Centurion
Hosted High Availability™; Centurion LiveVault™; Check 21 Cash Letter™; Check 21 Exception Processing™; CheckCollectPlus™; Check Collect Recovery
Services™; CheckMaster™; CheckMaster Plus™; Check Writer for Core Director®; CIF 20/20% Co-Mingle™; Cognos 10™; Collateral and Document
Tracking™; Compliance Access™; Core Director®; Core Director® Teller™; Core Director® Teller Capture™; CreataCard®; Cruise®; CruiseNet®; CTRMaster™;
CUPRO® ALM™; CUPRO® ALM Express™; Customer Payment Portal™; Database Cleansing Package™; DataLink CU™; Demand Account Reclassification™;
DIME™ (Document Image Management Engagement); DirectLine International™; DirectLine® OFX; DirectLine Wires™; Dynamic Content Modules™; ECS
Capture Solutions™; ECS Digital Data Conversion™; ECS Paper-to-Digital Conversion™; ECS Web™; eCTR™; Electronic Statements™; Electronic
Statements — Interactive™; Enhanced Account Analysis™; Enhanced Loan Application™ (ELA); Enhanced Loan Collections™; Enhanced Member
Application™ (EMA); Enterprise Backup and Tape Encryption™; Enterprise Capture Solutions™; Enterprise Conversion Solutions™; Enterprise Payment
Solutions™; Episys¥; Episys® Anywhere™; Episys® Collateral and Document Tracking™; Episys® Collection Toolkit™; Episys® Dealer Reserve Accounting™;
Episys® Escrow Module™; Episys® ID Scanner Interface™; Episys® Management Server™:; Episys® Overdraw Tolerance™; Episys® Quest™; Episys®
University™; Episys® Vaulting™; Episys® Virtualization™; EPS Remote Deposit Capture™; Extra Awards®; Failover™; Fed-File Pro™; FlexPass™;
FormSmart™; FX Gateway™; Genesys Check Imaging Suite™; Gladiator®; Gladiator® Advanced Malware Protection™; Gladiator® Consulting Services™;
Gladiator® CoreDEFENSE Managed Security Services™; Gladiator® eBanking Compliance Services™; Gladiator® eCommercial SAT™; Gladiator® Enterprise
Network Design, Implementation & Support Services™:; Gladiator® Enterprise Security Monitoring™; Gladiator® Enterprise Virtualization Services™; Gladiator®
eSAT™; Gladiator® eShield ™; Gladiator® IT Regulatory Compliance/Policy Products™:; Gladiator® Managed IT Services™; Gladiator® Managed Unified
Communications Services™; Gladiator® NetTeller® Enterprise Security Monitoring™; Gladiator® Network Services™; Gladiator® Phishing Defense and Response
Service™; Gladiator® Social Media Compliance Services™; Gladiator Technology®; Gladiator® Unified Communications Services™; goDough®; GoldPass™;
Hosted Pay Page™; iBizManager™; Image ATM™; Image ATM Capture and Reconciliation™; ImageCenter™; ImageCenter ATM Deposit Management™;
ImageCenter Image Capture™; ImageCenter Interactive Teller Capture™; Intellix CIF 20/20° OutLink Renewal Engagement™:; Intellix Consulting™; InTouch
Voice Response®; Investor Servicing™; iPay Biz 2.0™; iPay Consumer Online Bill Pay™; iPay OneClick™; iPay Payment Data API™; iPay QuickPay™; iPay
Solutions™; iRisk™; Isosceles™; iTalk™; Jack Henry & Associates, Inc.®; Jack Henry Banking®; JHA Consumer Pieces™; JHA Merchant Services®; JHA
OutLink Processing Services™; JHA Payment Processing Solutions®; jnaAddress Verify™; jhaCall Center™; jhaDirect®; jhaEnterprise Mobility™; jhaEnterprise
Workflow™; jhalD Scan™; jnhaknow™; jhaknow Express™; jhaPassPort Debit Optimizer™; jhaPassPort™; jhaPassPort.pro™; jhaPassPort Direct™;
jhaPassPort Extra Awards™; jhaPassPort Fraud Center™; jhaPassPort Hot Card Center™; jhaPassPort Promotions and Consulting Services™; jhaPassPort
Switch™; jhArchives™: jVault®; jXchange™; Know-It-All Credit Programs ™; Know-I{-All Education™; Know-It-All Learning Management Portal™; Know-It-All
Now™; Landlord/Tenant Security Deposit Tracking™; LendingNetwork®; Loan Collateral Tracking™; Margin Maximiser Interactive™; Margin Maximizer
Interactive™; Margin Maximiser MaxConnect™; Margin Maximizer MaxConnect™; Margin Maximiser Pronto™; Margin Maximizer Pronto™; Margin Maximiser
Suite®; Margin Maximizer Suite®; Masterlinks¥; MaxConnect Interactive™; MedCashManager®; Member Business Services™; Member Privilege™; Mobile
Website™; Multifactor Authentication™; Mutual Fund Sweep™; Net.Check™; NetTeller®; NetTeller® Bill Pay™; NetTeller® Cash Management™; NetTeller®
Member Connect™; NetTeller® Online Banking™; OnBoard Loans™; OnNet™; OnX™; OpCon™; Opening Act™; Opening Act Express™; Optimizer™;
Participation Lending™; PassBook™; Point*™; PointMobility>"; PowerOn®; PowerOn2™; PowerOn Marketplace®; PowerOn® Studio™; PPS ImageSelect™;
Prepaid Cards™; Professional Consulting Services™; PROFITability®; Organizational PROFITability® Analysis System™; Product PROFITability® Analysis
System™; PROFITability® Budget™; PROFITability® Reporting Service™; PROFITstar®; PROFITstar® ALM Budgeting™; PROFITstar® Budget™; PROFITstar®
Classic™; PROFITstar® Reporting Service™; ProfitStars®; ProfitStars® Direct™; ProfitStars® mRDC™; ProfitStars Synergy®; Real Time™; Real Time
Gateway™; Refi Analyzer™; Regulatory Reporting Solutions™; Relationship 360™; Relationship Profitability Management™ (RPM); RemitCentral™;
RemitPlus®; RemitPlus® Remittance/Lockbox™; RemitWeb™; Remote Deposit Anywhere™; Remote Deposit Complete ™; Remote Deposit Express™; Remote
Deposit Now™; Remote Deposit Scan™; RPM Reporting Service™; Shared Branch™:; SigMaster™; Silhouette Document Imaging®; SilverLake Real Time™;
SilverLake System®; Smart EIP™; Smart GL™; SmartSight®; smsGuardian™; Store Forward™; StreamLine Platform Automation®; StreamLine Platform
Automation® — Deposits™; StreamLine Platform Automation® — Loans ™; Summit Support®; Sweep Account Processing™; SymAdvisor™; SymChoice Loan™;
SymCoennect™; SymForm™; SymForm PDF™; Symitar®; Symitar® ATM Services™; Symitar® Fraud Management™; Symitar® EASE™; SymX™;
SymXchange™; Synapsys®; Synapsys® Lobby Tracking™; Synapsys® Member Relationship Management™; Synergy API Integration Toolkit™; Synergy
Autolmport™; Synergy Automated Document Recognition™ (ADR); Synergy Batch Document Recognition™ (BDR); Synergy Check Archive™; Synergy
DataMart™; Synergy Document Management™; Synergy Document Tracking™; Synergy eDistribution™; Synergy Enterprise Content Management™ (ECM);
Synergy eSign™; Synergy eSignWeb™; Synergy Express™; Synergy ID Scan™; Synergy iSign™; Synergy Kofax Capture™; Synergy PowerSearch™;
Synergy Reports™; Synergy Workflow Management™; TeleBank™; TeleWeb Bill Payment™; TeleWeb Cash Management™; TeleWeb Mobile™; TeleWeb
Online Banking™; TellerMaster™; TheWayiPay®; TimeTrack Human Resources™; TimeTrack Payroll System™:; TimeTrack Time and Attendance™; Transaction
Logging and Vaulting Server™; Transaction Logging Server™; ValuePass™; Vehicle Pricing Interface™; Vertex Teller Automation System™:; Vertex Teller
Capture™; Virtual Transaction Logging Server™; WebEpisys™; Website Design & Hosting™; Website Security Services™; Wire Management™; Yellow
Hammer™; Yellow Hammer ACH Origination™; Yellow Hammer BSA™; Yellow Hammer BSA Regulatory Consulting Service™; Yellow Hammer EFT Fraud
Detective™; Yellow Hammer Fraud Detective™; Yellow Hammer SAR Center™:; Yellow Hammer Wire Origination™; Xperience™

Slogans

Cutting-Edge IT Solutions for the Future of Credit Unions®"'; Know-It-All - Empowering Users Through Knowledge®"; Leading through technology ... guiding
through support™; Powering Actionable Insights¥; Snap it Send it Spend it*; The Depth of Financial Intelligence®™; We Are Looking Out For You®¥; Where
Tradition Meets Technology="

Various other trademarks and service marks used or referenced in this document are the property of their respective companies/owners.

JXChange HeadEr BENAVIONuuiiiiiiiiiiiiiiiiiieie et 2

REQUEST SITUCTUIE ...t e e et e e e e e e e e e e nns e a e e e e e e eennnes 2
Institution Routing ldentification BENAVIONcouiiiiiiiiicieee e 3
Backwards CompatiDilityooeuiiiiiii e e 3
EA Architectural GUIAEHNEScvuiiiiie e 4

0] A= TU LR =T=] g F= 1Y/ 0] £ 5
] XU o = 5

ErTOr CAEOOMES ..ttt 5

ST = A/ (0] £ 6
ENUMEIAEA EIBMENTS. ittt e e e et e e e e et e e e e e ea e e et e st e eeanans 6
Closed ENUMErated EIEMENTS ... cuu i e e e e e e e e eaas 6

Open Enumerated EIMENtSoooviiiiiiiiiii 7
CONCUITENCY IMOUEISot e e e e e e e e e e et e e e e e e e e e eaat e e e aaeaaeaennnes 8
ConcurrenCy EA GUIAEIINES.........ouuiiiii it e e 9
AJAItION SEIVICE GUILEIINES .. ovnieiii ittt e e e e et s et s sa s st s ebssaseasennaees 11
Modification SErvICE GUIAEINEScuuieiiiiiie et e et e e et s et s et s raseaaeaaaees 12
INQUIrY SErvice GUIAEINESooeiiiiii i e e e e e e e e aaaas 13
SEAICH SEIVICE GUIAEINES .. .ceeiie e e e e e e e e et e et e et e e e e aaas 14
Search Record Request / Response BENaVIOr ... 18

VA A1 o (o= g0 IS Y=T= T o o 18

Y EYo2 a1 (] g 4 T=1 (] o P 20
Authentication USEr CredentialSveeiieeiiie et e s e e 20
(OIS (o T = LT 1T 20
Documented ChoiCE STtAtEMENTSuuiiii i et e e e e e e e eans 21

[l oTror=To I (=T 1 g 1< 1€ 23

N L A N[0 AN] o 10 (<R 24

V1Y g 10T o 1S 1 | P 25

Y Ty Y= AN 1] o1 1 (T 25

(RS 1 =TT 4= 1Y/ L0) T 25

DG | ST = T=T o= AV o SRRSO 26

Provider Behaviors Guidelines 1 Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption

Release 2014

jXchange Header Behavior

e Tracking Utilization
e Lives in Request and Response Message
e Specific Behavior

Request Structure

XSD Element Path Required/Opt Comment
ional/Conditi
onal
jXchangeHdr.JXVer 0] jXchange will return the current version deployed
regardless of the value in the request header
jXchangeHdr.AuditUserld R This is the User Id which the consumer would like

written to the audit as performing the requested
service. It will vary but could be down to the user
id. It will not be used to authenticate however,
just audit.

jXchangeHdr.AuditWsld R This is the Workstation |d which the consumer
would like written to the audit as performing the
requested service

jXchangeHdr.ConsumerName 0] The name of the consumer that is consuming the
service

jXchangeHdr.ConsumerProd 0] The name of the product which is consuming the
service (Business Product Name)

jXchangeHdr.jXLogTrackingld 0 jXchange could create Id when not submitted by
Consumer

jXchangeHdr.InstRtid C The identification of the entity of submitted

message. A financial institution will utilize the
routing transit or ABA nine (9) digit number
assigned to financial institutions for the purpose
of routing as assigned by the American Bankers
Association. Any leading zeros must be provided
for a complete routing and transit number. A
non-financial institution entity will use a mutually
agreed upon identification that must contain at
least one non-integer character. When a record
is directed to a specific Financial Institution
within a holding company, the institution routing
identification is specific Financial Institution
routing identification and not the holding
company identification

jXchangeHdr.InstEnv 0] An identification provided by the consumer that
defines the environment in which the institution
is operating. Production (PROD) is the default
value

Provider Behaviors Guidelines 2Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

jXchangeHdr.BusCorrelid 0] The correlation identification as related to
business functions and activities

jXchangeHdr.WorkFlowCorelld O The correlation identification as related to
workflow functions and activities
jXchangeHdr.ValidConsmName O The consumer name that can be validated by

Enterprise goverance.
The consumer product name that can be
validated by Enterprise goverance.

Behavior: The combination of the valid consumer

name and valid

consumer product would provide the type of

device being used by the

consumer based on settings for the

transformation layer.
jXchangeHdr.ValidConsmProd 0] The consumer product name that can be

validated by Enterprise goverance.

Responses should echo back the information provided in the jXchange Header with the
Consumer request.

Institution Routing Identification Behavior

o The Service Provider will need to map to the submitted Institution Routing number
<InstRtld> element if their application maintains a different institution identifier
e The Institution Routing Number <InstRtld> can be the nine (9) digit assigned by the
American Bankers Association (ABA).
o Allleading zeros must be included to be a complete routing and transit number
e The absence of the Institution Environment <InstEnv> element will equate to “PROD” =
Production Environment.
o It will be the responsibility of the sender to send the appropriate data to identify
the environment if necessary

Backwards Compatibility

Backward compatibility is a relationship between two components, rather than being an attribute of just
one of them. More generally, a new component is said to be backward compatible if it provides all of
the functionality of the old component. Backward compatibility is the special case of compatibility in
which the new component has a direct historical ancestral relationship with the old component.
jXchange maintains Backwards Compatibility with the user of Version Tags

The notion of compatibility applies to messages. In the case of a message a new version of that
message ("v2") is said to be backward compatible with the old version of the message ("v1")
when it can both send and receive messages that work with v1. Everything that v1 could do
must also be possible with v2, that can be read by v1 (which is something that v1 could do.)

Provider Behaviors Guidelines 3Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

XSD iteration versions are interim releases of an XML schema that contain only the changes
that are backwards compatible the existing version of this schema. Changes that can be
incorporated in a iterated version:

e Backward Changes
o Adding new optional elements or optional attributes
o Changing attributes cardinality from mandatory to optional
o Adding a term to an enumerated list

¢ Non-Backward Changes
o Changing an attribute cardinality from optional to mandatory
o Adding a mandatory element
o Changing an attribute or element tag name

EA Architectural Guidelines

The Enterprise Architect XSD contracts incorporate version tags within an object. The version
tags represent an iteration growth of the object but will be backwards compatible. The version
tag is embedded in an optional sequence. This allows the iteration to be optional based on the
optional sequence but the version tag is required which conveys to the service provider that the
consumer understands the preceding objects after the version tag. This structure intuitively
allows the consumer to ignore the additional objects without breaking any existing application
processes.

The concept of backwards compatibility extends beyond the structural design of XSD contracts
to include the business services (programs) that support the XSD contracts. All service
providers should adhere to maintaining backwards compatibility so not to disturb consumers’
applications. Changes that are not backwards compatible:

o Creating errors due to Service Provider’s data base field to element size differentials
o Service Providers should truncate and return a warning to consumer
e Creating hard errors for previously successful message requests
o Service Providers should establish a tenet that allows the business service to get
around the error situation;
o Regulatory changes could be an exception to this rule
e Changing an Error Code <ErrCode> from one value to another for an existing error or
fault
¢ Removing a business service so the message can no longer be supported
o Service Providers should adhere to the established deprecation policy
o Removing support of a previously support closed enumerated value
o Service Providers should establish a tenet that allows the canonical value to be
translated to acceptable value

Provider Behaviors Guidelines 4Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

XSD Contract Iteration Example

<xsd:complexType "CustDetail CType">
<xsd:sequence>

<xsd-element "PersonName" "PersonName_CType" Q"=
<xsd:element "Addr" "Addr_CType" Q"=
<xsd:element "CustType" "CustType Type" "o" "true"/=
<xsd:element "NAICSCode" "NAICSCode_Type" " "true” /=
<xsd:element "StdIndustCode” "StdIndustCode_Type" "g" "true” /=
<xsd:element "Gender" "Gender Type" "g" "true”/>
<xsd:element "BirthDt" "BirthDt_Type" "g" "true"/=
<xsd:element "EmplName" "EmplName_Type" "o" "rue” />
<xsd:element "OccType" "OccType_Type" "o e /=
=xsd:element "CustOrgDt" "CustOrgDt_Tvpe" "o" "mue” /=
<xsd:element "LastMainDt" "LastMainDt_Type" "o "true"/=
<xsd:element "Deceased” "Deceased_Type" "o" "true" /=
<xsd:element "DeceasedDt" "DeceasedDt_Type" "g" "true"/=>
<xsd:element "Email Amray” "EmailArray_AType" "0
<xsd:element "Phone Array" "PhoneArray AType" "0"/>
<xsd:element "Custom" "Custom_CType" "=

<xsd:sequence minOQccurs="0"=
<xsd:element name="Ver_1" type=""Ver_1_CType"/=
<xsd:element name="HouseHoldNum" type="HouseHoldNum_Type" minOccurs="0" nillable="true" /=
<xsd:element name="HouseHoldName" type="HouseHoldName_Type" minOccurs="0" nillable="true" /=

Obiject Iteration <xsd:element name="5SpouseName" type="PersonName CType" minOccurs="0" nillable="true" /=

<xsd:sequence minOccurs="0">
<xsd:element name="Ver_2" type="Ver_2_CType"/>
<xsd:any namespace="##targetNamespace" processContents="lax" minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence=
</xsd:sequence>
</xsd:sequence=
</xsd:complexType=

Error/Fault Behaviors

JXchange, error handling has been designed into the messaging structure and involves
notification through use of codes, categories and descriptions, as well as options for error
overrides for non-fatal errors.

Structure

ErrCode — Error Code (Required)

ErrCat — Error Category (Required)

ErrDesc — Error Description (Required)
ErrElement — Error Element (Optional)
ErrElementVal — Error Element Value (Optional)
ErrLoc — Error Location (Optional)

Error Categories

o Warning — Successful transmission of requested response transmission, but information
must be returned to the consumer describing under what conditions the successful
response was able to be created

e Error — Failure condition that cannot be overridden and must be corrected before
processing can be completed

e Fault — Failure condition that can be overridden

e Override — Specific kind of warning notifying the customer that the fault has been
overridden

Provider Behaviors Guidelines 5Report © 1999-2015 Jack Henry & Associates, Inc.

Product Adoption
Release 2014

Behaviors

e Override Behavior

o When a consumer wishes to override a fault then he must send the unique error
code in the element Error Override Information array in the operation request and
the service provider will understand that they should ignore the list of codes
given.

o If the <ErrOvrRd> element contains a maximum number of nines (9999999 value
for a seven digit integer), the Service Provider is notified that all faults should be
overridden, if possible

o Parallel vs. Serial Error Message Handling

o Serial — a Service Provider will issue an error response message when it has
discovered the first error in a request.

o Parallel — The Service Provider can continue to process a request message after
detecting a fault capable of being overridden in an attempt to identify all possible
errors before returning an error message to the Consumer

o Parallel Error Message Handling is the most efficient method and is suggested
as the preferred error handling system for Service Providers.

Enumerated Elements

These are elements that have a pre-defined set of data values. The XSD contracts define enumerated
elements by data type Closed Enumerated or Open Enumerated. The EAG defined types adopt the
string primitive data type.

Closed Enumerated Elements

These are elements that have a pre-defined set of data values. The XSD contracts define
enumerated elements by data type Closed Enumerated or Open Enumerated. The EAG
defined types adopt the string primitive data type.

The Closed Enumerated values are defined in the XSD contract in the form of annotations.

The fixed values are the only data set that a consumer of these elements needs to understand.
A Service Provider may return a fault when a value is delivered in a message that a Service
Provider does not understand. However; an XML document with values not defined in the
contract will pass schema validation. This behavior allows for closed enumerated values to be
forward compatible whereas the Consumer and the Service Provider understand a value but the
XSD contract annotated values have not been updated.

The closed enumerated values are a much more effective means from the perspective of a SOA
guideline as it reduces any ambiguity behavior of an element. The Closed enumeration values
can be used by the jXchange Framework in determining how to invoke an operation. Some of
the behaviors that goes along with this are; (1) if the element is not sent or sent empty, and it is
required, a fault error will be returned; (2) if the element is not sent or sent empty, and it is
optional, a default will be used and; (3) if the element is sent with an incorrect value, a fault

Provider Behaviors Guidelines 6Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

error could be returned. Generally, a name closed enumerated element will be suffixed with
~Type~ or ~Stat~.

A service provider could transform the XSD contract defined values to values that are

understood by their application. For example, a service provider might accept the closed
enumerated value of ~Months~ but could store that value in their application as ~M~.

Closed Enumerated Element Example

<xsd:complexType name="TermUnits_Type">
<xsd:annotation>
<xsd:documentation>
<Jx>
<ElemDesc>term units Years,Months, Days, Indefinite
</ElemDesc>

<CanonicalVVal>Days,Months,Years,SemiMonthly, Indefinite, NA</Canonical Val>
</Ix>
</xsd:documentation>
</xsd:annotation>
<xsd:simpleContent>
<xsd:extension base="ClosedEnum_Type">
<xsd:attribute name="JHANull" type="JHANull_Type"
use="optional"/>
<xsd:attribute name="Rstr" type="Rstr_Type" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Open Enumerated Elements

The Open Enumerated values are a definite set of values but those values are not represented
in the contract. These enumerated values often differ from Service Provider to Service
Provider as well as service provider installations sites to service provider installations sites.

Open enumeration elements are generally suffixed with Code. The element that is suffixed with
Code has a mate element that is suffixed with Desc. This is because often a service provider
field is represented as a code that does not convey its representation thereby the service
provider returns the description of the code that is a literal value that can be understood by the
consumer. Generally, an element suffixed with ~Code~ could be found in Addition and
Modification business operations whereas an element suffixed with ~Desc~ would be found in
Inquiry, Multi-Inquiry, and Search business operations. An example might be <IntCalcCode>
would have a mate called <IntCalcDesc>.

o Service Provider conveys these canonical values by means of web service call —
Service Dictionary Search (SvcDictSrch)

Provider Behaviors Guidelines 7 Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

Open Enumerated Element Example

<xsd:complexType name="IntCalcCode_Type">
<xsd:annotation>
<xsd:documentation>
<Jx>
<ElemDesc>Interest calculation method </ElemDesc>
</Ix>
</xsd:documentation>
</xsd:annotation>
<xsd:simpleContent>
<xsd:extension base="OpenEnum_Type">
<xsd:attribute name="JHANull" type="JHANull_Type"
use="optional"/>
<xsd:attribute name="Rstr" type="Rstr_Type" use="optional"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

Concurrency Models

¢ The application and database must work in concert to provide the appropriate level of
data integrity and performance while minimizing user rework to address conflicts and
deadlocks.

e Optimistic, Pessimistic and Chaos refer to three different types of concurrency concepts
and the safeguards an application will take based on the likelihood of concurrent
updates and how much rework is acceptable

o Optimistic concurrency control is used when it is unlikely that different users will
update the same data

o Pessimistic concurrency control is used when it is likely that the same data will
be updated by different users

o Chaos concurrency control is used in situations when concurrent updates are not
possible or “last in wins” is acceptable.

Provider Behaviors Guidelines 8Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

Concurrency EA Guidelines

In database systems, a consistent transaction is one that does not violate any integrity
constraints during its execution and ensures that correct results for concurrent operations are
generated, while getting those results as quickly as possible.

The application and database must work in concert to provide the appropriate level of data
integrity and performance while minimizing user rework to address conflicts and deadlocks.

Optimistic, Pessimistic and Chaos refer to three different types of concurrency concepts and the
safeguards an application will take based on the likelihood of concurrent updates and how much
rework is acceptable.

Optimistic concurrency control is used when it is unlikely that different users will update the
same data. Inthe unlikely event that the same data is updated by different users, the conflict is
detected when data are saved and the second user must redo/merge changes in order to
prevent overwriting the changes made by the first user. Users of a well designed optimistic
concurrency application experience fast response time and are inconvenienced only in the rare
case of an update conflict.

Pessimistic concurrency control is used when it is likely that the same data will be updated by
different users. To prevent the need to redo or merge changes, an application serializes data
access so that only one user can edit data at a time. The obvious downside is that subsequent
users must wait until preceding user(s) has completed their changes and this can increase
response time or data unavailability. However, overall user productivity can be better than
optimistic currency control because rework is avoided.

Chaos concurrency control (also known as Anarchy) is used in situations when concurrent
updates are not possible or “last in wins” is acceptable. No safeguards need to be taken with
chaos concurrency because there is either no chance of conflicts or overwrites are ok. Chaos
concurrency is typically used in single-user applications or in multi-user applications where data
are segregated in such a way that concurrent updates are either not possible (e.g. unique web
session key) or so unlikely (e.g. CustomerlD key) that the risk of lower concurrency level isn’t
warranted

e Adoption of the Optimistic Concurrency model for modification services
o The activity intention element will exist on all inquiry operations that support a
modification mate
e The Activity Intention element allows the consumer to convey to the service provider
their intention for the data returned in the response.
o The Activity Intention element <Actintent> supports three canonical values:
= Read Only (ReadOnly) — this is the default
= Update (Upd)
= Delete (DIt)
e The service provider will echo back the Activity Intention element in the response.
o The service provider will return an Activity Intention Key when the consumer
submits the Activity Intention element canonical values of Update or Delete.
o The service provider must return a unigue Activity Intention Key <Actintentkey>
for each item that is returned when the response includes an array of elements.

Provider Behaviors Guidelines OReport © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

o The consumer should cache the Activity Intention Key so it can be submitted in a
subsequent modification request.
o The Service provider will return a fault when the provider’s saved data does not match
the intended updated data when the consumer’s modification request with Activity
Intention Key <ActintentKey> is submitted on the modification request.

Concurrency Model Diagrams

Request with Intent Flag

Based on the Mod's Input
Reference file... create a
unique record with all the
current data for the Mod
Request.

Response with Unique Key

Request with Optional Key Value

Inquiry

|
Intent Flag True—#|
|
|4 Fals

Create Key.,
Shore current
Mod Request

I

Provider Behaviors Guidelines

True—#|

Modification

4+ Fals=

Same Values

Allow Mod to continue

Walues have changed

|—
Retumn Error

These data validations can
e global, individual, or
based on what is being

rhanned

10Report

Pass Unigue Key Back

Unigue key is based on the
response from the
associated inguiry operation
Validate Key /
Record walues

hawe not

I'. changed E

ompare values to
current Silverlake

Walues

© 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

<
Consumer @
t 1) Application AcctMod

message
submitted which
Accting message submitted with includes the
Activity Intent of ~Upd~ activity
Intention key

Accting response contains an
activity intention key

— |

Service Provider

Data
Base
Provider caches Accting Elements = = AcctMod success is determined if the
and creates activity intention key g data remained static from the time of
the Accting and the AcctMod regquest
Cache T:::)drt;y
Document

Cache
b~ /\ —~ b~
|
|

Provider compares cache elements
to source of record elements to
determine if data remained static

Addition Service Guidelines

e The named EA XSD contract will be suffixed with ~Add~

e The business function will convey to the service provider to create an entry/record in the
service provider’s data base for the supported business service

e The service provider would return the added entry/records keys in the response if
applicable

e The majority of the child node elements will be decorated with the JHANull attribute

o Generally, the request message will have a complex object that is required but all the
elements inside the complex object are optional. This should convey that at least one of
the elements inside the object is required

e A consumer may send a Service Dictionary Search (SvcDictSrch) message for all
addition services to obtain the service provider’s element default values. This will assist
the consumer in their validation process for elements without having to deliver the XML
payload and receiving an error that an element is required by the service provider even
though the XSD contract references the element as optional

Provider Behaviors Guidelines 11 Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

¢ The EA XSD addition contracts make use of re-used complex objects. Thereby, often
many of the child nodes (elements) encapsulated by a parent node (complex) are
optional from an XSD contract perspective. However; service providers will have
minimum requirements as to the required elements which will be conveyed to the
consumer by means of message fault(s).

Addition Service XSD Contract Example

<xsd:complexType name="AcctBenfAddRq MType'">
<xsd:sequence>

<xsd:element name="MsgRqHdr" type="MsgRqHdr CType"/>

<xsd:element name="EnOviRdInfoAmray" type="EnOviRdInfoAmray_AType" mimnOccurs="0"
allable="true"/>

<xsd:element name="AccountId" tvpe="Accountld_CType"'>

<xsd:element name="AcctBenf" tvpe="AcctBenf CType">

<xsd:element name="Custom" type="Custom_CType" mmOccurs="0" nillable="true"/>

<xsd:sequence minOccurs="0">
<xsd:element name="Ver_1"type="Ver_1_ CType"/>
<xsd:anynamespace="#ZtargetNamespace" processContents="lax" mmOccurs="0"

1axOccurs="unbounded"/>
<'xsd:sequence>
<'xsd:sequence>
<xsd:complexType>

<xsd:complexType name="AcctBenfAddRs MType">
<xsd:sequence>
<xsd:element name="MsgRsHdr" tyvpe="MsgRsHdr CType"/>
<xsd:element name="BenfKey" type="BenfKey_Type" mmOccurs="0" nillable="true"/>
<xsd:element name="RsStat" type="RsStat Type" minOccurs="0" nillable="true"/>
<xsd:element name="Custom" type="Custom CType" minOccurs="0" nillable="true"/>
<xsd:sequence minOccurs="0">
<xsd:element name="Ver_1"type="Ver 1 CType"/>
<xsd:any namespace="##targetNamespace" processContents="lax" minOccurs="0"

Dccurs="unbounded"/>
<xsd:sequence>
<xsd:sequence>
<xsd:complexType>

Modification Service Guidelines

The EA XSD contracts that qualify as a modification service, also, serve as a delete service.
There is not, generally, an EA XSD contract service specific to a delete business requirement.
The method of deletion is discussed below. The EA XSD contracts that qualify as a
modification service will generally meet the following requirements:

e« The named EA XSD contract will be suffixed with ~“Mod~;

e The business function will convey to the service provider to update an entry/record in the
service provider’s data base for the supported business service;

e The service provider would return the RsStat element as success in the response if the
operations request was successful otherwise, a fault is returned;

Provider Behaviors Guidelines 12Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

e The service provider should return a fault when any of the modified elements are invalid on the
request and will never return a partial success response;

e The child node elements will be decorated with the JHANull attribute. The behavioral aspect of
the attribute is addressed elsewhere in this document;

e The request message will have required element(s) representative of the keys as related to the
specific business service;

e The request message will contain a delete element <DIt> that permits a consumer to submit the
key(s) with a Delete=true without a complex object to convey a delete request to the Service
Provider. However; the service provider reserves the right to either mark the record for
deletion or perform a data base delete request.

<xsd:complexType name="AcctBenfModRq MType">
<xsd:sequence>
<xsd:element name="MsgRqHdr" type="MsgRqHdr CType">
<xsd:element name="EnOviRdInfoAmay" type="EnOvrRdInfoArray AType" mmOccurs="0"
nillable="true"/>
<xsd:element name="AccountId" tvpe="Accountld CType"/>
<xsd:element name="BenfKey" type="BenfKey_Type"/>
<xsd:element name="AcctBenf" typs="AcctBenf CType" minOccurs="0" nillable="true"/>
<xsd:element name="DIt" tvpe="Dit Type" mmOccurs="0" nillable="true"/>
<xsd:element name="Custom" type="Custom_CType" minOccurs="0" nillable="true"/>
<xsd:sequence minOccurs="0">
<xsd:element name="Ver_1"type="Ver_1_CType"/>
<xsd:any namespace="2%targetNamespace" processContents="lax" mmOCccurs="0"
maxOccurs="unbounded"/>
<'xsd:sequence>
<'xsd:sequence>
</xsd:complexType>
<xsd:complexTypename="AcctBenfModRs MType">
<xsd:sequence>
<xsd:element name="MsgRsHdr" tvpe="MsgRsHdr CType"/>
<xsd:element name="RsStat" type="RsStat_Type" minOccurs="0" nillable="true"/>
<xsd:element name="Custom" type="Custom_CType" minOccurs="0" nillable="true"/>
<xsd:sequence minOccurs="0">
<xsd:element name="Ver_1"type="Ver_1_CType">
<xsd:anynamespace="#ZtargetNamespace" processContents="lax" minCeccurs="0"

naxOccurs="unbounded"/>
<'xsd:sequence>
<'xsd:sequence>
</xsd:complexType>

Inquiry Service Guidelines

e The named EA XSD contract will be suffixed with ~Ing~

¢ The request message will have required key(s) however; the key(s) may be presented in
the request as a documented choice statement

e The service provider will return a fault when an invalid key(s) is submitted on the request

Provider Behaviors Guidelines 13Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

e The service provider would return the elements as related to the requested key in the
response

¢ Some of the child or parent node elements could be decorated with the Restriction
~Rstr~ attribute

e The response message may be a multi-occurrence object depending upon the business
activity of the inquiry message

e The request message may contain the Include Extended Element array that may require
the consumer to submit a list of “x_" named objects to be returned in the response

o Arequest made with a valid key but does not include any of the “x_”" named
objects could be returned a response with no complex objects.

e The RsStat element is NOT included in the response because successful response

package is an implied <RsStat>Success</RsStat> element value

Search Service Guidelines

e The names EA XSD contract will be suffixed with ~Srch~

e The request message may have required key(s) however; the key(s) may be presented
in the request as a documented choice statement

e The request message could have a number of elements that can serve as filters that
allows a consumer to reduce the response set being returned

¢ The request filters will be echoed back at the root response message

e Some of the child or parent node elements could be decorated with the Restriction
~Rstr~ attribute. The behavioral aspect of the attribute is addressed elsewhere in this
document.

e The response message will always be a multi-occurrence object

e The request message may contain the Include Extended Element array that allows a
consumer to include a list of “x_" named objects to be included with the default response
set.

e The search message has a specific message header that differs from other message
headers to allow the service providers to provide a pseudo state in a stateless message
environment.

o The Search Message headers differ from other message headers so that a
Service Provider can convey a data set state within a message paradigm that
maintains a stateless environment. The elements encapsulated in the Search
Message Header are used to control the records and the number of those
records that returned to the consumer. A Service Provider establishes the
number of maximum records that is returned to a consumer. A Service Provider
will default a value for the maximum records when the consumer’s maximum
records values in the operation request exceeds the Service Provider’s
established thresholds for an operation.

Provider Behaviors Guidelines 14Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

<xsd:complexType name="SrchMsgRqHdr_CType">
<xsd:annotation=
<xsd:documentation>Search specific message request headers='xsd:documentation>
</xsd:annotation>
<xsd:sequence>
<xsd:element name="jXchangeHdr" tvpe="jXchangeHdr CType"/>
<xsd.element name="MaxRec" 1vpe="MaxRec_Type">
<xsd-element name="Cursor” rvpe="Cursor_Type" minOccurs="0">
<xsd:sequence minOccurs="0">
<xsd:element name="Ver_1" tvpe="Ver_1_CType"/>
<xsd-element name="AuthenUsiCred” tvpe="AuthenUsrCred_CType" minOccurs="0">
<xsd:sequence minOccurs="0">
<xsd element nume="Ver_2" type="Ver_2_CType">
<xsd:any namespace="##targetNamespace” processContents="lax" minOccurs="0"
maxOccurs="unbounded">
</xsd sequence>
<'xsd:sequence>
</xsd:sequence>
</xsd:complexType>

MaxRec (Request) - Tells the provider the maximum number of records to returnin the response
Cursor (Request) - Tells the provider at which record to begin returning the results

Provider Behaviors Guidelines 15Report © 1999-2015 Jack Henry & Associates, Inc.

Product Adoption
Release 2014

complexType

SrchMsgRsHdr_CType™

n=>Search specific message response headers=xsd docun

iXchangeHdr CType">
‘SentRec_Type
Mor

jXchangeHd:"

"Cursor” "Cursor_Type 0>
TotRec" TotRec_Twy >
"MsgRecInfoAmay” "MsgRecInfoAmay_ATvpe”
Ver_1" Ver_1_CType™~>
#sargetNamespace Tax"

‘unbounded” >

SentRec (Response) - Tells the user how many records were returned; may or may not be equal to the maximum number requested

MoreRec (Response) - Tells the user if there are more records available than what was returned
Cursor (Response) -Tells the user which record (as a number) would be next to be returned

Search Message Header Behavior Example

FirstCall

Request
Cursor = left blank
MaxRec = 50

Response
SentRec =50
MoreRec = True
Cursor = 51
TotRec =145

Second Call

Request
> Cursor = 51
MaxRec =50

Response
SentRec =50
MoreRec = True
Cursor =101
TotRec is not
returned

Third Call

Request
> Cursor =101
MaxRec =50

Response
SentRec = 45
MoreRec = False
Cursor is not
returned

TotRec is not
returned

e The following are those elements and their respective role in the search message
header;The RsStat element is NOT included int the response because successful
response package is an implied element value

o Arequest made with a valid key, if applicable, but due to filters submitted in the request
returned a zero set of response does not constitute a fault. The service provider will
provide a warning to convey that no records matched the consumer’s search criteria

e The response set is typically a limited element response set but could return some
key(s) that allows a consumer to capture to make an inquiry message service call if
applicable for the search business activity

Provider Behaviors Guidelines

1 6Report

© 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

<xsd:complexType name="AcctHistSrchRq MType™
<xsd:sequence>

<xsd-element name="SrchMsgRqHdr" tvpe="SrchMsgRqHdr_CType">
<xsd:element name~"InAcctld" type="Accountld CType">
<!— This is a documented filter statement - Any or All ofthe following canbe sent —>
<xsd:element name="ChkNumStart" tvpe="ChkNumStart_Type" mmOccurs="0" nillable="true"/>
<xsd:element name="ChkNumEnd" type~"ChkNumEnd_Type" nunOccurs="0" mllable="true"/>
<xsd-element name="StartDt" rvpe="StartDt_Type" mnOccus="0" nillabl=="true">
<xsd:element name="EndDt" tvpe="EndDt_Type" minOccurs="0" nilable="true">
<xsd:element name="LowAmt" type="LowAmt Type" mmnOccurs="0" nillable="true"/>
<xsd:-element name="HighAmt" tvp=="HighAmt_Type" mmOccurs="0" millable="true">
<xsd:element name~"StMthd" tvpe="SttMthd Type™ mumnOccurs="0" nillable="true">
<xsd:element name="TmType" type="TmType_Type" mmOccurs="0" nillable="true"/>
<xsd-element name="EFTOnly" tvpe="EFTOnly_Type" minOccurs="0" millable="true">
<xsd:element name="MemoPostInc” tvpe~"MemoPostIne Type" mumnOccurs="0" nullable="true"/>
<! End documented filter statement —
<xsd:element name="Custom” tvpe="Custom_CType" mmOccurs="0" nillable="true"/>
<xsd:sequence mmCecurs="0">

<xsd:elementname="Ver_1"tvp=="Ver_1_CType">

<xsd:element name~"XferKey" type="XferKey Type"mmOccurs="0" milable="true">

<xsd:sequence mnOcowrs="0">

<xsd:element nam=="Ver_2"type="Ver_2_CType">
<xsd:any namespace="#2targetNamespace" processContente="lax" munOc curs="0"
maxOcours="unbounded" >
</xsd:sequence>
<'xsd:sequence>
<'xsd:complexType>

<xsd:complexType name="AcctHistSrchRs_MType"™>
<xsd:sequence>
<xsd:-element name="SrchMsgRsHdr" typ=="SrchMsgRsHdr_CType">
<xsd:-element name="AcctHistSrchRecAmay” tvps="AcctHistSrchRecAmay_AType" rminOccurs="0"
nillable="true"/>
<xsd:element name="SvcPrvdInfo" tvpe="AcctHistSrchRs_EType" mmOcowrs="0" mnillable="tme">
<xsd:element name="Custom"” type="Custom_CType" munOccurs="0" rllable="true"/>
<xsd:sequence mmOccurs="0">
<xsd:elementname="Ver_1"type="Ver_1_CType">
<xsd:any namespace~"#StargetNamespace" processContents«"lax" nunOccurs="0"
maxOcours="unbounded"/>
</xsd:sequence>
< xsd:sequence>
<xsd:complex Type>

Provider Behaviors Guidelines 17Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

Search Record Request / Response Behavior

There are elements that pertain strictly to search operations that are used to control the records
and the number of those records that are returned to the user.
e Cursor (Request) — Tells the provider at which record to begin returning the results
¢ MaxRec (Request) — Tells the provider the maximum number of records to return in the
response
o SentRec (Response) — Tells the consumer how many records were returned; may or
may not be equal to the maximum number requested
o MoreRec(Response) — Tells the user if there are more records available than what was
returned
e Cursor (Response) — Tells the user which record (as a number) would be next to be
returned
o TotRec(Response) — Tells the user the total number of records that exist in the file that
meet the criteria of the request; is not returned if Cursor was included with the request
e An example can be found at the above EA link.

Wildcard Search

A wildcard search allows a consumer to get a response set that is dynamic based on a
message request elements. Many elements, conveyed clearly by their name, convey to a
consumer a key that then conveys to the service provider that the consumer is interested in the
data that matches that key. However; many search filter elements need to provide a consumer
a means to search for the matches. This can be referred to as a wildcard search because the
consumer does not have enough information to do an exact match search. These types of
searches can be based on partial data value. The consumer needs to convey to the service
provider as to the type of partial search such as but not limited to Exact Match, Contains within,
Starts With, and Ends With.

¢ A wildcard search allows a consumer to get a response set that is dynamic based on a
message request elements
e Many search filter elements need to provide a consumer a means to search for the
matches
e This can be referred to as a wildcard search because the consumer does not have
enough information to do an exact match search
e These types of searches can be based on partial data value
¢ The consumer needs to convey to the service provider as to the type of partial search
such as but not limited to:
o Exact Match
o Contains within
o Starts With
o Ends With
e A service provider cannot require exact case matches
o For example, if a consumer submits a last name data value of ~mcgrath~ then
the service provider should respond back with any data values that match

Provider Behaviors Guidelines 1.8Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

regardless of case which could include but not limited to ~McGrath~, ~Mcgrath~,
~mcgrath~, ~\MCGRATH~ or any combination of case difference thereafter

Exact Match Search Response Example

Request: <LastName "Exact">Smi</LastName>

Response: <LastName>Smi</LastName>
<FirstName>John</FirstName>
<LastName>Smi</LastName>
<FirstName>Joe</FirstName>

Contains Match Search Response Example

Request: <LastName "Contains">Smi</LastName>

Response: <LastName>Smi</LastName>
<FirstName>John</FirstName>
<LastName>Smi</LastName>
<FirstName>Joe</FirstName>
<LastName>Gunsmith</LastName>
<FirstName>Jane</FirstName>

Ends With Match Search Response Example

Request: <LastName "EndsWith">Smi</LastName>

Response: <LastName>Dritiesmi</LastName>
<FirstName>Lucas</FirstName>

Starts With Match Search Response Example

Request:
<LastName "StartsWith">Smi</LastName>

Response:
<LastName>Smith</LastName>
<FirstName>Mike</FirstName>
<LastName>Smitherrens</LastName>
<FirstName>Jason</FirstName>
<LastName>Smitty</LastName>
<FirstName>James</FirstName>

Provider Behaviors Guidelines 19Report

© 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

Misc Information

Authentication User Credentials

e Authentication of end user credentials in the form of a WS Security Element that
contains a single SAML V2.0 assertion

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-0s.pdf

Custom Elements

The EA XSD contracts wildcard schema is provided by means of a custom complex. The custom
complex (Custom_CType) provides a mean for institution specific data as an extension point for
custom variations of the XSD common dictionary. The ##other namespace property is leveraged as
this allows all elements which are from namespace other than targetNamespace.

The provision for a consumer (message sender) to deliver custom elements to a service provider
(message recipient) that is not part of the XSD contract. The W3C defines this component as
Wildcard Schema.

Wildcard is the XML-Schema insider's term for an "xs:any" or an "xs:anyAttribute" declaration inside
a schema. The idea is, wherever a wildcard appears in an XML Schema content model, "any"
element or "any" attribute can be allowed to appear in an actual XML instance. This declaration
permits zero or more elements with "any" name inside the "targetNamespace" to appear at the end
of the content model.

This approach does come with some problems even though it provides an excellent extensibility
mechanism for cooperating with stakeholders between future and past versions of the same
schema. There are several reasons wildcards are not a good way to achieve compatibility between
versions.

1. AtargetNamespace wildcard permits too much freedom for current-version message
producers to insert garbage that will be incompatible with future-version message consumers;

2. Awildcard in a specific place does not provide enough flexibility for natural data model
evolution in the second version of the schema;

3. Technical limitations of wildcards - the element declarations consistent and unique particle
attribution rules - prevent their use in "natural" ways and require awkward "wrapping" techniques;

4. And most seriously, wildcards put the onus on the designer of the original version of a schema
to anticipate where and how evolution of the schema will occur. Experience shows that few people
understand the future well enough to actually anticipate it.

Provider Behaviors Guidelines 20Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf

EA Architectural Guidelines

The EA XSD contracts wildcard schema is provided by means of a custom complex. The custom
complex (Custom_CType) provides a mean for institution specific data as an extension point for
custom variations of the XSD common dictionary. The ##other namespace property is leveraged as
this allows all elements which are from namespace other than targetNamespace.

XML Custom Example

<?xml version="1.0" encoding="UTF-2"7>
<EAContractExample xmins:wsu="http://docs.oasis-open.org/wss/2004/01/0asis-20040 1 -wss-wsse cunty-utility-1 .0 xsd"
zmins:ds="http://www w3 .org 2000/09/xmldsigz"
zmins: S0AP-ENV="http://schemas xmlsoap. org'soap/envelope/”
xmins:wsse="http://docs.oasis-open.org wss/2004/01/0asis-20040 1-wss-wssecunty-secext-1.0 xsd"
Custom Namespace "hittp:/j ackhem’j._'.comjxchmge TPG/2008"
—» xmhs:custom="http://NamespaceCustom corm/Example"
xmins:xsi="http/www.w3 .org/ 2001/ XMLSchema-instance">
<MsgB.qHdr>
<jKchangeHdr>
<AnditUsrId>Fdl oL 8Fp 8T8 Fe GAT= Audit UstTd=
ZAnditWsId=SusSxyyFOsMN< AuditWsId>
<Ner_1/>
</jXchangeHdr>
<Ner_1/=
</MsgRqHdr>
“Acctld=1111111</Acctld=
“Custonm™
Custom Pa ckage <rcustom: CustomElement] >ssssssszs<custom: CustomElement 1=
<custom: CustomElement? >tttttttttt<! custorm: CustomElement 2>
</ Custom™
<Ner_1/=
</ EAContractExample >

Documented Choice Statements

e EA does not make usage of xsd:choice statements because:

o Some programming languages do not provide an explicit mapping from
xsd:choice whenever a code generator encounters xsd:choice in a type
definition, it could map that type to a less than friendly API

o XSD does not permit versioning within the choice statement which creates a
challenge to maintain forward compatibility.

Provider Behaviors Guidelines 21Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

Choice Statement Example

<xs:complexType name="chadState">
<xs:choice minCccurs="1" maxCOccurs="1">
<x3:element f="gelected"/>
<xXs:element ="unselected"/>
<xs:element ="dimpled"/>
<x3:element "perforated"/>
</xs:choice>
<x3:attribute name="candidate" type="candi
</xs:complexType>

=

m

h Hh

m
ho b

L T T T |

m

r

dateType"/>

EA makes use of documented choice statements.

o The XSD syntax in itself does not convey a specific behavior but the comments
provided via either XML comments or annotations does convey this behavior

(0]

The disadvantage to this method is that it requires a developer to read the XSD

in order to understand behavior rather than allowing a code generator toolkit to

understand based on XSD syntax
EA Document Choice Statement Example
=xsd:complexType name="AcctAddRg_MType"=

=xsd:sequence=
=xsd:element name="MsgRgHdr" type="MsgRgHdr_CTyp

e'f=

<xsd:element name="ErnOwRdInfoArray" type="ErrOvtRdInfoArray_AType" minOccurs="0"

nillable="true"f=

=xsd:element name="Accountld" type="Accountld_CType"f=
=l-- Only one of the following elements should occur - Like a choice statement --=

=xsd:element name="DepAdd" type="DepAdd_CType" mi

le="true"r=

nOceurs="0" nillah

=xsd:element name="TimeDepAdd" type="TimeDepAdd_CType" minOccurs="0" nillable="true"f>

=xsd:element name="LnAdd" type="LnAdd_CType" minoc

=l-- End "documented only' choice statement --=
=xsd:element name="Custom" type="Custorn_CType" mint

=¥sd:sequence minDocurs="0"=
=xsd:element name="Yer_2" type="Ver_2_CType"f=
=xsd:any namespace="##HargetNamespace” process

="unbounded"/=
=fhsd.sequence=
=fksd:sequence=
=fsd.complexType=

Provider Behaviors Guidelines 22Report

}
F:

ceurs="0" nillahle="true"f>

Jccurs="0" nillable="true"f=

Contents="lax" minOccurs="0"

© 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

Forced Elements

The vast majority of EA XSD message elements are optional because messages often are supported by
multiple service providers. This can be the cause of some ambiguity on the part of the message receiver
(consumer) when an element, understood by the service provider, but not returned in the message
because the element is optional. The guidance for forced elements is as follows;

e “When a data value is zero a service provider’s response will return the element whose primitive
type is decimal as a value of “0”.
o For example, the element for current balance could appear as <CurBal>0</CurBal>.
o This would explicitly convey to the consumer that the numeric element has an actual
value rather than implicitly due to the element missing in the response.
o The following exceptions exist for this guidance:
o The service provider has no knowledge of the element
o The service provider is returning the element as part of an echo-back element from the
request
o The service provider value is known but undefined (Null)

The proceeding table provides guidance for all element types.

Reference Type Empty Missing Null
Int Zero Zero Null
Long Zero Zero Null
String Null Null Null
Date Null Null Null
Time Null Null Null
Base64Binary Null Null Null
anyURI Null Null Null
ID Null Null Null
Decimal Null Null Null

This table summaries that

(1) if a service provider has a decimal element it will be delivered,;
(2) element integers (int & long) will only be used as numbers and are therefore safe to
be assumed as zero when missing or empty; and
(3) all other element types have no special behavior.
Provider Behaviors Guidelines 23Report © 1999-2015 Jack Henry & Associates, Inc.

Product Adoption
Release 2014

A service provider might return a zero when the contract defines an element as a :string
but the service providers data store reference field is stored as an integer. In this case,
the zero might need to be conveyed to the consumer due to the some expected
behavior.

JHANuUll Attribute

The mechanism “xsi:nil= true” was added to the WC3 XML Schema standard to explicitly assign
a value to null to an element rather than using an empty element to implicitly assign a value to
null. Because the behavior in the jXchange framework treats all messages as literal XML and
passes that XML on to the provider it allows the provider to distinguish the difference between
a missing element and one that is there but has “xsi:nil = true” .

The provider is using the explicit declaration to define a behavior where the element needs to be
modified to a null value and when the element is missing to mean do not modify the existing
element. This behavior is legitimate and uses the capability of the XML Schema specifications.
The problem with this becomes apparent when a service is implemented and the message is
de-serialized into objects under the covers. All the elements that are defined by the proxy or
service for messages are created as objects and null or its actual value is assigned to them.
There is not a way to represent that an element is not included in the XML but the value is not
null in the object world using the present parsers

e An object is null whether it doesn’t exist or the element is assigned to “xsi:nil=true”
o This becomes a problem because most implementation of web services are
deserialized on input and serialized on output
o Any other approach is discouraged as the complexity of implementation becomes
more difficult
e Clients that are using .Net or probably any tool kit will not be able to take advantage of
this implementation in the jXchange framework
o They will not have control over an element creation during serialization using the
existing tools.

EA Architectural Guidelines

The behavior expectation for XML elements in a modification service for (1) absence element,
(2) empty element, or (3) xsi:nil=true are the same. This should convey to the service provider
to do nothing. However; jhanull=true will convey to the service provider to set the element to a
null value. The jhanull=true could require different implementation per platform. It could mean
null for one platform whereas another it might convey *zeros or blanks.

The behavior expectation for XML elements in an addition service for (1) absence element, (2)
empty element, or (3) xsi:nil=true are the same. This should convey to the service provider to
set defaults. However; jhanull=true will convey to the service provider to set the element to a
null value. The jhanull=true could require different implementation per platform. It could mean
null for one platform whereas another it might convey *zeros or blanks.

Provider Behaviors Guidelines 24Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

XML JHANull Snippet Example

The Beneficiary distribution code is being conveyed to the service provider to set the stored
element value
as null.

<PInCust>
<BenfDistCode "true"/>
<OrigOwnCustld=QYQ6RjWyTmefKv4bM=/OrigOwnCustld=
<OrigOwnBirthDt=2012-01-01</OrigOwnBirthDt>
<OrigOwnName=oMSgTu</OrigOwnName>

</PInCust>

MemoPostinc

o Elementincluded in an AcctHistSrch message that determines the behavior searching
history search for memo posted items. The default value will be Excl (Exclude).
Canonical Values are:

o Excl
o Only

e If the MemoPostinc element has the value of “Only”, XSLT is used to transform the
AcctHistSrch request to a MemoPostSrch request and then is sent to the provider. XSLT
is used to transform the provider's MemoPostSrchResponse to an
AcctHistSrchResponse.

o If the MemoPostInc element has the value of “Excl”, it is just passed through.

MaskVal Attribute

The service provider will always include the clear text of the element value however; may
optionally include the service provider's masked value of the clear text. This will allow the
consumer to switch from a masked value to a clear text value with requiring an additional

service call.
Example: <Taxld MaskVal="882-89-7818">882897818</TaxId>

Rstr Behavior

The attribute Restrictions <Rstr> references the element of the same name and is a closed
enumerator with the following canonical values:
e NoAccess = Access is denied. This attribute value may exist at the parent node as well
as the element node.
o NoAccessPart = Access is denied as a default for all of the nodes related to the parent
node and any of the related nodes could override the accessibility setting at the parent
node. This attribute value can only exist at a parent node.

Provider Behaviors Guidelines 25Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

o ReadWrite = Full read and write access to any of the nodes. This is the default value.

o ReadWritePart = Full read and write access for all the nodes related to the parent node
and any of the related nodes could override the accessibility setting at the parent node.
This attribute value can only exist at a parent node.

¢ ReadOnly = Read only to any of the nodes.

¢ ReadOnlyPart = Read only as a default for all of the nodes related to the parent node
and any of the related nodes could override the accessibility setting at the parent node.
This attribute value can only exist at a parent node.

e Hid = Hide all of the nodes.

The canonical values that are prefixed with Part (Partial) will convey to the consumer that
overrides can exist for any of the proceeding nodes. Therefore, these canonical values can
never exist at an element node.

The elements in the XML body are decorated with an attribute that conveys restrictions for an
element. However, the data pertaining to the element is delivered when the service provider
needs to convey to the consumer that the data element should be masked. For example, the
current balance with restrictions could appear as <CurBal Rstr =
“NoAccess”™1000.00</Curbal>.

X_Filter Behavior

To limit the size of responses containing automatically generated response elements, jXchange
is designed to automatically return priority preferred elements from any given message pair and
retain the non-preferred and less used premium complex elements until they have been
specifically requested

e Operations containing the premium x_prefix complexes in the response elements,
request elements (IncXtendElemArray and XtendElem) are included in the Request
message structure to call for any or all premium complexes. The request elements, if
needed, must contain the name of one or more premium complexes

e A Service Provider may adopt the option to return all object and allow the Service
Gateway to filter out the complexes not requested.

Provider Behaviors Guidelines 26Report © 1999-2015 Jack Henry & Associates, Inc.
Product Adoption
Release 2014

